CRYSTAL-FIELD-DRIVEN REDOX REACTIONS: HOW COMMON MINERALS SPLIT H₂O AND CO₂ INTO REDUCED H₂ AND C PLUS OXYGEN F. Freund, F. Batllo, R. C. LeRoy, S. Lersky, M. M. Masuda, San Jose State University and S. Chang NASA Ames Research Center It is difficult to prove the presence of molecular H_2 and reduced C in minerals containing dissolved H_2 and CO_2 . We developed a new technique by which we can unambiguously show that minerals grown in viciously reducing environments contain peroxy in their crystal structures. These peroxy represent interstitial oxygen atoms left behind when the solute H_2O and/or CO_2 split off H_2 and C as a result of internal redox reactions, driven by the crystal field. The observation of peroxy affirms the presence of H_2 and reduced C. It shows that the solid state is indeed an unusual reaction medium.